Status and Design Features of the new NASA GRC Reverberant Acoustic Test Facility (RATF)

Mark E. McNelis, William O. Hughes, Aron D. Hozman, Anne M. McNelis
NASA Glenn Research Center

June 8-10, 2010
Test Facility Overview

- The Space Power Facility (SPF) at the NASA Glenn Plum Brook Station in Sandusky, OH is developing an environmental test capability for NASA’s future space programs.
- SPF will provide *one-stop shopping* for a wide variety of space environmental testing.

Environmental Facility Capability:

- Acoustic
- Mechanical Vibration
- Modal
- Thermal-Vacuum
- EMI/EMC

- The focus of this presentation is the status and design of the Reverberant Acoustic Test Facility (RATF).
Space Power Facility (SPF)
Provide and Support Future NASA Testing

- Acoustic Testing
- Sine Vibration and Modal Testing
- Disassembly Bay Area
- Thermal Vacuum and EMI/EMC Testing
Benham Corporation is Prime Contractor

* RATF Suppliers:

TEAM: MK VI and MK VII Modulators

Wyle: WAS 5000 Modulators

m+p International: Acoustic Control System
RATF Acoustic Requirements

- Wide range of OASPL
- Diverse spectral energy requirements
 - Low frequency dominant spectra
 - High frequency dominant spectra
 - Twin peaked spectra
Acoustic Test Series

<table>
<thead>
<tr>
<th>Test</th>
<th>Date</th>
<th>Location</th>
<th>Test Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRC I and II</td>
<td>December 2007 - January 2008, April 2008</td>
<td>NRC, Ottawa, Ontario, Canada</td>
<td>Acoustic response characterization of the TEAM modulators and initial horn evaluation. (Benham/Aiolos)</td>
</tr>
<tr>
<td>Redstone</td>
<td>May 2008</td>
<td>Redstone Arsenal, Huntsville, AL</td>
<td>NASA independent acoustic characterization of TEAM modulator and horns, including high frequency horn. Comparison of results with WAS 3000 modulator. (NASA)</td>
</tr>
<tr>
<td>Phase 2</td>
<td>October 2009</td>
<td>NRC, Ottawa, Ontario, Canada</td>
<td>Multiple modulator control. WAS 5000 acoustic characterization. (Benham/Aiolos)</td>
</tr>
<tr>
<td>Paint Absorption</td>
<td>February - March 2010</td>
<td>Owens-Corning, Granville, OH</td>
<td>Test characterization of acoustic absorption of RATF wall paint. (Cambridge Collaborative Inc. for NASA)</td>
</tr>
</tbody>
</table>
Reverberant Acoustic Test Facility (RATF)

Chamber Properties

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chamber Size</td>
<td>47.5 ft L x 37.5 ft W x 57 ft H</td>
</tr>
<tr>
<td>Chamber Volume</td>
<td>101,189 ft³</td>
</tr>
<tr>
<td>Acoustic Modulators</td>
<td>23 TEAM Modulators & 13 WAS 5000 Modulators</td>
</tr>
<tr>
<td>Horns</td>
<td>36 (grouped at 7 different horn cut-off frequencies)</td>
</tr>
<tr>
<td>Nominal GN₂ flow rate</td>
<td>72,000 scfm</td>
</tr>
<tr>
<td>Main Door Opening</td>
<td>34.5 ft wide</td>
</tr>
<tr>
<td>Number of Main Doors</td>
<td>2</td>
</tr>
<tr>
<td>Door Type</td>
<td>Sliding and hinged</td>
</tr>
<tr>
<td>OASPL, empty</td>
<td>163 dB OASPL</td>
</tr>
</tbody>
</table>

Minimum 10 minute continuous run times (worst case)
Designed for 47 ft tall x 20 ft diameter test article
RATF Modulators and Horns

TEAM MK VI

![Image of TEAM MK VI modulator and horn setup]

Wyle WAS 5000

![Image of Wyle WAS 5000 modulator and horn setup]

<table>
<thead>
<tr>
<th>Horn</th>
<th>25 Hz</th>
<th>35 Hz</th>
<th>50 Hz</th>
<th>80 Hz</th>
<th>100 Hz</th>
<th>160 Hz</th>
<th>250 Hz</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulator</td>
<td>MKVII</td>
<td>MKVII</td>
<td>MKVII</td>
<td>MKVII</td>
<td>MKVI</td>
<td>MKVI</td>
<td>WAS5000</td>
<td>36</td>
</tr>
<tr>
<td>Final Design Count</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>8</td>
<td>13</td>
<td>36</td>
</tr>
</tbody>
</table>
RATF Horn Wall Layout

- Two 25 Hz horns
- Two 35 Hz horns
- Four 50 Hz horns
- Three 80 Hz horns
- Four 100 Hz horns
- Eight 160 Hz horns
- Thirteen 250 Hz horns (expandable to 20 horns)

Total: 36 horns
Aiolos’ Predicted RATF Spectra

C1

C2

C3

C4
Aiolos’ Predicted RATF Spectra

C5

Band SPL, dB re 20 micro Pascals vs. 1/3 Octave Band Centre Frequency, Hz

- TEAM: 25 Hz(4), 50 Hz(4), 100 Hz(7), 160 Hz(6); WAS5000(0)
- OASPL163.2dB; Total Flow 42,800 scfm
- C5 - Upper end
- C5 - Low end

C6

Band SPL, dB re 20 micro Pascals vs. 1/3 Octave Band Centre Frequency, Hz

- TEAM: 25 Hz(4), 50 Hz(0), 100 Hz(4), 160 Hz(2); WAS5000(0)
- OASPL153dB; Total Flow 21,700 scfm
- C6 - Upper Bound
- C6 - Lower Bound

C7

Band SPL, dB re 20 micro Pascals vs. 1/3 Octave Band Centre Frequency, Hz

- TEAM: 25 Hz(4), 50 Hz(0), 100 Hz(4), 160 Hz(2); WAS5000(0)
- OASPL153dB; Total Flow 21,700 scfm
- C7 - Upper end
- C7 - Low end

C8

Band SPL, dB re 20 micro Pascals vs. 1/3 Octave Band Centre Frequency, Hz

- TEAM: 25 Hz(3), 50 Hz(3), 100 Hz(4), 160 Hz(12); WAS5000(13)
- OASPL163dB; Total Flow 67,800 scfm
- C8 - Upper end
- C8 - Low end
RATF Construction

Foundation started in April 2008
Horn Wall – Installation of Horn Frames

Legend

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 Hz</td>
<td>Blue</td>
</tr>
<tr>
<td>35 Hz</td>
<td>Red</td>
</tr>
<tr>
<td>50 Hz</td>
<td>Purple</td>
</tr>
<tr>
<td>80 Hz</td>
<td>Green</td>
</tr>
<tr>
<td>100 Hz</td>
<td>Pink</td>
</tr>
<tr>
<td>160 Hz</td>
<td>Orange</td>
</tr>
<tr>
<td>250 Hz</td>
<td>Black</td>
</tr>
</tbody>
</table>

Space Available for Future Expansion

Scarring (for 250 Hz)
Overhead View – Preparation Horn Room Pour 1

Installation of horn frames and rebar
Concrete pour #1 completed October 2009
Concrete pour #1 completed with forms removed
Overhead View – Preparation Horn Room Pour 2

Horn wall level 2 horn frame and rebar installation
Overhead View – Horn Room Pour 2

Concrete pour #2 completed with forms removed
Looking Forward

Spring/Summer 2010:
Installation of vaporizer system, horns, and modulators

Fall 2010/Winter 2010-11:
Door installation; Benham Verification Testing with turnover to NASA

Spring/Summer 2011:
NASA Integrated Systems Testing (IST)

Fall 2011:
Available for Testing

RATF Facility Manager: Mr. Aron D. Hozman,
Phone: (419)-621-3301, Aron.D.Hozman@nasa.gov
RATF will be the most Powerful Large Reverberant Acoustic Chamber in the World!

<table>
<thead>
<tr>
<th>(Active) Reverberant Acoustic Test Facility</th>
<th>Location</th>
<th>Volume (ft3)</th>
<th>Max. OASPL (dB) Empty Chamber</th>
<th>Year Commissioned</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lockheed Martin Missiles and Space, bldg.156, cell no.1, LVATF</td>
<td>Sunnyvale, CA</td>
<td>189,200</td>
<td>156.5</td>
<td>1973</td>
</tr>
<tr>
<td>NASA Plum Brook Station</td>
<td>Sandusky, OH</td>
<td>101,200</td>
<td>163.0</td>
<td>Planned for 2011</td>
</tr>
<tr>
<td>Lockheed Martin Space Systems</td>
<td>Denver, CO</td>
<td>75,900</td>
<td>154.0</td>
<td>1985</td>
</tr>
<tr>
<td>Boeing Satellite Development Center (Boeing SDC)</td>
<td>El Segundo, CA</td>
<td>67,800</td>
<td>155.0</td>
<td>2004</td>
</tr>
<tr>
<td>Lockheed Martin Missiles and Space (LMMS), bldg.159</td>
<td>Sunnyvale, CA</td>
<td>64,000</td>
<td>157.3</td>
<td>1996</td>
</tr>
<tr>
<td>Mitsubishi Electronics</td>
<td>Kamakura, Japan</td>
<td>61,700</td>
<td>152.0</td>
<td>2002</td>
</tr>
<tr>
<td>Large European Acoustic Facility (LEAF) at ESTEC</td>
<td>Noordwijk, The Netherlands</td>
<td>59,000</td>
<td>154.5</td>
<td>1990</td>
</tr>
<tr>
<td>Northrop Grumman Space Technology (NGST), LATF</td>
<td>Redondo Beach, CA</td>
<td>51,600</td>
<td>154.0</td>
<td>1996</td>
</tr>
</tbody>
</table>
Thank you

Contact Information:
Mark E. McNelis
NASA Glenn Research Center
Mark.E.McNelis@nasa.gov